
Replication: MAXIMUM A POSTERIORI POLICY
OPTIMISATION

Yi-Hsin Chen, Zhi-Yi Chin, Yu-Hsuan Li, Yu-Jie Chen
Department of Computer Science
National Chiao Tung University

{yhchen12101.cs09,joycenerd.cs09,evali890227.cs09,cyj407.cs09}@nycu.edu.tw

1 Problem Overview

The author proposed an reinforcement learning algorithm based on the EM algorithm (Moon [1996])
and used the thought of RL in inference to optimize the maximum probability of a trajectory at each
step. Based on this, the paper came up with two MPO algorithms, one is similar to PPO (Schulman
et al. [2017]) and TRPO (Schulman et al. [2015]), and the other is a new algorithm.

This paper achieves its goal with the help of an additional distribution. Therefore, not only the
parameters of the model but also the distribution have to be trained. In order to train the two things,
the author thus used EM algorithm: tune the distribution in E-step and train the model parameters in
M-step.

2 Background and The Algorithm

2.1 Policy Improvement

Assume the event O = 1 be interpreted as obtaining maximum reward by choosing an action and
assuming p(O = 1|τ) ∝ exp(

∑
t rt/α), which α is a temperature parameter. The goal is to optimize

the strategy to maximize the probability of the event, that is, to maximize the following objectives:

log pπ(O = 1) = log

∫
pπ(τ)p(O = 1|τ)dτ >

∫
q(τ)[log p(O = 1|τ) + log

pπ(τ)

qπ(τ)
]dτ (1)

= E[
∑
t

rt/α]− KL(q(τ)||pπ(τ)) = J (q, π) (2)

Equation (1) and (2) uses an auxiliary distribution q(τ) to substitute the real (but difficult to get)
distribution pπ(τ), also uses the evidence lower bound (ELBO) to get the lower bound of the formula.
Thus, an RL problem becomes an inference problem, that we can use the EM algorithm to solve this
problem.

The above optimization goal is expressed based on the trajectory; in the convenience of op-
timization, we generally hope to write it based on a single-step transition. Let q(τ) =
p(s0)

∏
t>0 p(st+1|st, at)q(at|st); the above optimization goal can be rewritten as (note that KL

over trajectories decomposes into a KL over the individual state-conditional action distributions):

J = Eq(τ),s0=s,a0=a[

∞∑
t≥1

γt[rt − αKL(gt||πt)]] (3)

At the same time, defined a regularized Q function:

Qqθ(s, a) = r0 + Eq(τ)s0=s,a0=a[

∞∑
t≥1

γtrt] (4)

Also, KL(qt||πt) = KL(q(a|st)||π(a|st, θ)), and the corresponding reward r̃t = rt−α log q(at|st)
π(at|st,θ)

Preprint. Under review.

2.2 E step

E step aims to update q to optimize J. Still, in the expression of the objective function J, the q
distribution controls the trajectory of the states; therefore, optimizing the objective function isn’t easy.
Therefore, there is no way to think that the trajectory of the state is still the original trajectory but to
maximize the probability of selecting different actions in each state (according to q) to do one-step
optimization. That optimizes the formula below:

max
q
J̄s(q, θi) = max

q
Tπ,qQθi(s, a) = max

q
Eµ(s)[Eq(·|s)[Qθi(s,a)]− αKL(q||πi)] (5)

Also, Bellman operator Tπ,q = Eq(a|s)[r(s, a) − αKL(q||πi) + γEp(s′|s,a)[Vθi(s
′)]], thus we can

choose qi = arg max J̄ (q, θi) in every E step. Since the penalty term α isn’t easy to determine, in
contrast, KL divergence is more invariant (under different circumstances), therefore came up with the
hard constraint version below (similar to TRPO):

max
q

Eµ(s)[Eq(a|s)[Qθi(s,a)]]s.t.Eµ(s)[KL(q(a|s), π(a|s, θi))] < ε (6)

There are two ways to solve this optimization problem:

1. Use parametric variational distribution: think that q is a parameterized model, so we can
directly optimize the above goal and get a new q; we can observe that q can be used as a
new policy, so there is no need to do M-step because M-step is to minimize KL divergence
of the distribution q and the policy π, we can directly set the policy π to the distribution q.
TRPO and PPO are optimized based on Equation 6.

2. Use non-parametric representation: To express q(s, a) in a non-parametric way, that is, to
express their values on the collected samples; in this way, an additional M-step is needed
to obtain a generalizable representation of the policy. Compared with the parametric
representation method, this method is more innovative. The following mainly talks about
how to implement this method.

There is a close form solution for Equation 6:

qi(a|s) ∝ π(a|s, θi) exp(
Qθi(s, a)

η∗
), (7)

where we can obtain η∗ by minimizing the following convex dual function,

g(η) = ηε+ η

∫
µ(s) log

∫
π(a|s, θ) exp(

Qθi(s, a)

η
)dads (8)

In the actual algorithm, several actions can be collected for each state sample, and then the extreme
points of Equation 8 can be calculated first, and then Equation 7 can be used to calculate q on each
state-action sample. Next, according to the q on these state-action samples, a generalizable policy
network, namely M-step, is obtained through supervised learning.

2.3 M step

The goal of E-step is qi = arg max J̄ (q, θi); on the other hand, the goal of M-step is θi+1 =
arg maxθ J (qi, θ), which is as follow:

max
θ
J (qi, θ) = max

θ
Eµq(s)[Eq(a|s)[log π(a|s, θ)]] + log p(θ) (9)

Then, choose a Gaussian prior p(θ) ≈ N (µ = θi,Σ =
Fθi
λ), where θi are the parameters of the

current policy distribution, Fθi is the empirical Fisher information matrix, and λ is a positive scalar.
Then Equation (9) can become as follow:

max
π

[Eµq(s)[log π(a|s, θ)]− λKL(π(a|s, θi), π(a|s, θ))] (10)

Similarly, use hard constraints and iteratively optimize Lagrangian multipliers and parameters.

2

2.4 Policy evaluation

In this paper, the policy improvement step is dependent on the information given by the Q function,
so the accuracy of the estimation of the Q function will directly affect whether this algorithm success
or not. Because this paper will do an off-policy algorithm to improve sample efficiency, therefore, the
estimation of the Q function uses Retrace to estimate:

min
φ
L(φ) = min

φ
Eµb(s),b(a|s)[(Qθi(st, at, φ)−Qret

t)2],with

Qret
t = Qφ′(st, at) +

∞∑
j=t

γj−t(

j∏
k=t+1

ck)[r(sj , aj) + Eπ(a|sj+1)[Qφ′(sj+1, a)]−Qφ′(sj , aj)],

ck = min

(
1,
π(ak|sk)

b(ak|sk)

)
(11)

3 Detailed Implementation

Since the original paper mentioned two cases, non-parametric and parametric one, we implement
the former one which has better performance prominently than other algorithms. In this section,
we separate to two parts. One is the model and module architecture, and the other is the training
procedure, which mainly focus on the algorithm implementation.

3.1 Models and Modules

3.1.1 Actor

As the common deep reinforcement learning methods, Actor is used to describe the policy actually
performing the decisions. We assume that the policy is given by a Gaussian distribution with a full
covariance matrix, i.e, π(a|s, θ) = N(µ,Σ). Our neural network outputs the mean µ and Cholesky
factor A such that Σ = AAT . The lower triangular factor A has positive diagonal elements enforced
by the softplus transform Aii ← log(1 + exp(Aii)).

The architecture of Actor is shown in Figure 1. We construct a three-layer structure to produce the µ
and A. The output dimension of µ would be the dimension of actions, and the dimension of A would
be the same as the covariance matrix, which is n(n+1)

2 , and n is the dimensions of actions. After we
gain the µ and A, we could get the corresponding Gaussian distribution to sample some actions.

3.1.2 Critic

The target of Critic is to evaluate the state. Consequently, it would output the Q-value according to
the input state s and action a. Critic share similar architectures with Actor. The first two layers are
the same as Actor, which are fully-connected with ReLU as the activation function. The last layer
only produce one dimension, which is the Q-value. The structure is shown in Figure 1.

3.1.3 Replay Buffer

Since MPO algorithm is off-policy, we write a replay buffer to store episodes. The replay buffer save
episodes, and each episode contains the state, the action, the next state, and the reward.

3.2 Training Procedure

We will introduce our setting first. The whole algorithm could separate to three parts, policy evaluation,
E step, and M step. The procedure of the non-parametric case is described in Algorithm 1.

3.2.1 Initialization and Setup

Unlike the most RL paper using gym as the environments, MPO chooses DeepMind Control Suite
Tassa et al. [2018] as their environments. The most differences between these two environments

3

Figure 1: Actor and Critic Architecture

Hyperparameter values

Dual Constraints ε 0.1
Decoupling mean εµ 0.1

Decoupling covariance εΣ 0.0001
Discount factor (γ) 0.99
Adam learning rate 0.0003

Table 1: Parameters for non parametric variational distribution

is that they uses different sorts of data structures to describe actions and observations. Since the
control suite uses quite complicated data structures, we are struggling with transforming it to
fit Pytorch tensor. As a consequence, we find a useful package ’dm_control2gym’(Seilair [2018]) to
simply convert the environments from the control suite to gym environment and enable visualization.
The ’dm_control2gym’ package provides the wrapper and viewer which allows us to directly operate
the data structure as gym environments.

In the implementation stage, first of all, we need to set up everything. For the models, we initialize
the two actors and two critics. One actor is the target one, also regarded as the old one, and the other
one is we actually perform. So do the two critics. Besides, we also set up some hyperparameters,
which is shown in Table 1. Most values are the same as the original MPO paper.

The description of Algorithm 1 is a little bit different to the original MPO paper. We modify
the loop condition that makes iteration loop as the outer one, and the batches as the inner loop which
is easier to understand. We set up our default number of re-run episodes Lmax to 3, that is, batches
will be re-sampled for 3 times from the current replay buffer in the inner loop. In short, the whole
procedure in the outer loop in each iteration is that the replay buffer would sample trajectories and
calculate the mean return and mean reward in the current replay buffer.

3.2.2 Policy Evaluation

To simplify, for the policy evaluation part, we do not follow Eq. 11 in our implementation but use
TD(0). In specific, we follow the following steps to update the critic network: (1) take samples from
the replay buffer, which contains (state, action, reward, next state); (2) for each sample, we predict
the policy distributions of the next state by target actor network; (3) sample 64 actions from policy
distribution for the next state; (4) compute expected Q value of the next state by target critic network
with next state, and sampled next actions; (5) compute Q value of the state with critic network by
state and action; (6) use TD(0) with Q value of the state, expected Q value of next state and reward to
update the critic network.

4

Algorithm 1 MPO (Non parametric variational distribution)

1: Input = ε, εΣ, εµ, Lmax
2: i = 0
3: Initialise Qωi(a, s), π(a|s, θi), η, ηµ, ηΣ

4: for each worker do
5: k = 0
6: while k < 1000 do
7: update replay buffer B with L trajectories from the environment
8: // Find better policy by gradient descent
9: Lcurr = 0

10: while Lcurr < Lmax do
11: sample a mini-batch B of N(s, a, r) pairs from replay
12: sample M additional actions for each state from B,π(a|s, θi) for estimating integrals
13: compute gradients, estimating integrals using samples
14: // Q-function gradient:
15: δφ = ∂φL

′
φ(φ)

16: // E-Step gradient:
17: δη = ∂g(η)

18: Let: q(a|s) ∝ π(a|s, θi) exp(
Qθt (a,s,φ

′)

η)

19: // M-Step gradient:
20: [δηµ , δηΣ

] = α∂ηµ,ηΣ
L(θk, ηµ, ηΣ)

21: δθ = ∂θL(θ, ηµk+1
, ηΣk+1

)
22: send gradients to chief worker
23: wait for gradient update by chief
24: fetch new parameter φ, θ, η, ηµ, ησ
25: Lcurr = Lcurr + 1
26: i = i+ 1
27: k = k + 1
28: θi = θ, φ′ = φ

3.2.3 E step

In the E-step of policy improvement, we follow the steps we describe in Section 2.2. Our goal is to
find the optimized distribution q, which can be obtained by current policy, Q-value function and eta
according to Eq.7. Q-value function Q should store all possible state-action pair, which cannot be
fulfilled in continuous environment. Hence, we sample actions for every states in a mini-batch to
build Q. Second, we can optimize the dual function either by Eq. 14 or by Eq.8 to get the η∗ of Eq.7.

It seems that we still need policy π(a|s, θ); however, note that the reason we multiply π(a|s, θ) is to
add the weight of each action. That is, we care more about the actions that appear more, which is
implicit in sample. (The more often to be applied, the easier to be sampled). Therefore, we do not
have to times the policy.

There is one more trick in this implementation: normalized. It is known that for every single state,
the sum of the probability to all actions is one, which can be maintain by a normalization function.
Another way to write Eq.7 is:

qi(a|s) = π(a|s, θi) exp(
Qθi(s, a)

η
) exp(−η − γ

η
)

where exp(−η−γη) is the normalization term, equal to
∫
π(a|s, θi) exp(

Qθi (a,s)

η). Just like mentioned
before, we could omit π(a|s, θ), leading to

qi(a|s) = exp(
Qθi(s, a)

η
) exp(−η − γ

η
)

exp(
η − γ
η

) =

∫
exp(

Qθi(a, s)

η
)da

5

We can thus deduce:

qi(a|s) =
exp(

Qθi (s,a)

η)∫
exp(

Qθi (a,s)

η)da
= softmax(

Qθi(s, a)

η
)

As a result, we can calculate qi(a|s) easily by Qθi(s, a), η and softmax function

3.2.4 M step

In the M-step of policy improvement, the target is to optimize policy network by Eq.10. In this paper,
the authors mentions they empirically found out that better results could be achieve by decoupling
the KL constraint into two terms i.e. constrain the contribution of the mean and covariance separately.
In specific, ∫

µq(s)KL(π(a|s, θi), π(a|s, θ)) = Cµ + CΣ, (12)

where
Cµ =

∫
µq(s)

1

2
(tr(Σ−1Σi)− n+ ln(

Σ

Σi
))ds,

CΣ =

∫
µq(s)

1

2
(µ− µi)TΣ−1(µ− µi)ds.

Therefore, the generalized objective of M-step is

max
θ

min
ηµ>0,ηΣ>0

L(θ, ηµ, ηΣ), (13)

where

L(θ, ηµ, ηΣ) =

∫
µq(s)

∫
q(a|s)logπ(a|s, θ)dads+ ηµ(εµ − Cµ) + ηΣ(εΣ − CΣ),

ηmu and ηΣ are Largrangian multipliers; εmu and εΣ are the threshold of Cµ and CΣ, respectively.
Since there are max and min in Eq. 13, we iteratively update θ, Largrangian multipliers. In specific,
we fixed θ first and solve minηµ>0,ηΣ>0 L(θ, ηµ, ηΣ) to get Largrangian multipliers η∗µ and η∗Σ, and
then solve maxθ L(θ, ηµ, ηΣ) with substituting η∗µ and η∗Σ into L(θ, ηµ, ηΣ). Iteratively solve these
two steps until θ, until θ and Largrangian multipliers converge.

In our implementation, we iteratively solve Eq. 13 five times. In both steps, we use gradient descent
to update. Note that, since Largrangian multipliers should be larger than zero, we clip the Largrangian
multipliers to zeros if the updated is smaller than zero. To stable the training process of actor network,
we use ’clip_grad_norm_’ to clip the gradient which larger than 0.1 to 0.1.

4 Empirical Evaluation

In the original MPO paper section 5.1, the author evaluate on Control Suite. Therefore, we train
several continuous tasks on Control Suite to show the performance of MPO with non-parametric
variational case. Here we separate to two subsections to discuss different points of view.

4.1 Evaluation on Cartpole, Hopper, and Acrobot

The suite of continuous tasks that we are evaluating against contains 4 tasks, comprising with 3
domains. To acquire the ability of our implementation, we test on Carpole, Hopper and Acrobot. The
simplest one to learn is Cartpole, and the middle level is Hopper. Finally, Acrobot is the most difficult
task to cope with. The visualization of the tasks is revealed in Figure 2. Here the model parameters
are the same as Table 1 when performing on all tasks.

We start by looking at the results for the simplest Cartpole domain with the balance task. From Figure
3, we could see the mean return is converged quickly around 200 iterations. The curve of the mean
return is quite similar to the plot in the original MPO paper. For the second task, we perform on both
hopper standing and hopping task. The mean return of both tasks is shown in Figure 4. The x-axis
is the iteration, and we could see that both returns are rising. However, the curve is not as smooth

6

Figure 2: Control Suite domains that we have tried. Left to right: Cartpole, Hopper, Acrobot

Figure 3: Mean return of Cartpole and Acrobot

as the one applied on Cartpole. In addition, it is obvious that standing task is easier to train than
the hopping task. Since training is extremely time-consuming, we only ensure that the mean return
is increasing so that we train for 1000 iterations only. Although the curves in our implementation
and the ones in the original paper are not alike, it is guaranteed that our implementation is correct
without any optimization or special tricks. The last task is Acrobot (two degrees of freedom) swing
up task. The reward in the Acrobot task is the distance of the robots end-effector to an upright
position of the underactuated system. It has one continuous action dimension and six observation
space dimension. Desipte being low-dimensional, it is actually not an easy control problem. From the
right plot of Figure 3, it is revealed that the mean return once increased slightly, but the trend seem
to be decreasing after around 400 iterations. The mean return in Acrobot swing up task converged
slower and achieved low return than other domain task. In comparison to the original paper, the
difference of the results between our implementation and the paper is not pretty much, since we have
mentioned that the Acrobot task is not easy to train.

4.2 Apply numerical tricks on Hopper task

When implementing the method, we found that the dual constraint η in the dual function, Equation
8, would congregate at a very small range of floating points around zero. The reason is that the
exp(·) operation in the dual function will have prominent difference when the Q-value inside the
exponential operation is possible to be in both positive and negative side. This lead to numerical
unstable. Consequently, we use a common trick similar to LogSumExp (LSE). We take out the
maximal Q-value of Qθi (s,a)

η , and denote it as Qmax. Currently, the dual function would be:

g(η) = ηε+ η

∫
Qmaxdads+ log

∫
π(a|s, θ) exp(

Qθi(s, a)

η
−Qmax)dads. (14)

Equation 14 would limit the exponential operation results fixed in the negative side of exp(·), and it
would be easier to see the difference during the computation. We could see that the changes of η is
prominent in the bottom row of Figure 5. Besides, the mean return on the same task reveals that the
curve is much stable than the top-right one of Figure 5. For instance, at around 300 iterations in the

7

Figure 4: Mean return of Hopper with stand and hop task

Figure 5: Mean return of Hopper with stable and unstable dual function. The left column is the
original dual function, and the right one is the stable version. The first row is the mean return on
Hopper with L1 loss, and the second row is the corresponding plot of η.

left-top sub-figure of Figure 5, the mean return has a sharp change. However, the mean return with
stable dual function version, the return would not be extremely high in the near epochs.

5 Conclusion

The author provided a new RL training strategy via training model and auxiliary distribution. The
main contribution is the idea transformation from inference to general RL task. The developed
method is off-policy, so the training process is efficient by replaying the experience from buffer
instead of interacting with the environment again and again, which is time consuming.

8

Furthermore, the author offered their theory with detailed explanation, helping the audience under-
stand the theory behind quickly.Nevertheless, there is a typo in the section D of the appendix:

exp(−η − γ
η

) =

∫
π(a|s, θi) exp(

Qθi(a, s)

η
)da

should be correct as

exp(
η − γ
η

) =

∫
π(a|s, θi) exp(

Qθi(a, s)

η
)da

Apart from replicating the algorithm from the paper, we also apply numerical tricks to stabilize the
training process. Moreover, We are considering improving the method by modifying the E-step. In
E-step, the author first set q = πθi when constructing the Q-value function, leading to the optimization
is one step. (Because we want to optimize q in E-step, but Q-value function is forced to follow πθi ,
not the optimized q) This modification might be hard to implement due to the dramatically increasing
complexity. However, if the above problem is overcome, the algorithm might benefit from faster
convergence rate, which alleviate the slow converging issue in off-policy algorithm.

References
T.K. Moon. The expectation-maximization algorithm. IEEE Signal Processing Magazine, 13(6):47–60, 1996.

doi: 10.1109/79.543975.

John Schulman, F. Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization
algorithms. ArXiv, abs/1707.06347, 2017.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region policy
optimization. In Francis Bach and David Blei, editors, Proceedings of the 32nd International Conference
on Machine Learning, volume 37 of Proceedings of Machine Learning Research, pages 1889–1897, Lille,
France, 07–09 Jul 2015. PMLR. URL http://proceedings.mlr.press/v37/schulman15.html.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden, Abbas
Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv preprint arXiv:1801.00690,
2018.

Martin Seilair. Deepmind control suite to gym. https://github.com/martinseilair/dm_control2gym,
2018.

9

http://proceedings.mlr.press/v37/schulman15.html
https://github.com/martinseilair/dm_control2gym

	Problem Overview
	Background and The Algorithm
	Policy Improvement
	E step
	M step
	Policy evaluation

	Detailed Implementation
	Models and Modules
	Actor
	Critic
	Replay Buffer

	Training Procedure
	Initialization and Setup
	Policy Evaluation
	E step
	M step

	Empirical Evaluation
	Evaluation on Cartpole, Hopper, and Acrobot
	Apply numerical tricks on Hopper task

	Conclusion

