Zhi-Yi Chin (Joyce)

Contact Information	zchin31415@gmail.com +886972752710
INFORMATION	https://joycenerd.github.io
Education	National Yang Ming Chiao Tung University Master in Computer Science and Engineering Expected graduation date: September, 2023February, 2021 - September, 2023Herricht All Structure RestanceAdvised by Prof. Wei-Chen Chiu Restance
	National Chung Cheng UniversitySeptember, 2017 - January, 2021Bachelor in Computer Science and Information EngineeringOverall GPA: 4.18 / 4.3Major GPA: 4.21 / 4.3Ranking: 1 / 43
Publications	(† indicates equal contribution) <u>Zhi-Yi Chin</u> [†] , Chieh-Ming Jiang [†] , Pin-Yu Chen, Ching-Chun Huang, Wei-Chen Chiu. Prompt-ing4Debugging: Red-Teaming Text-to-Image Diffusion Models by Finding Problematic Prompts , Submitted, 2023
	Zhi-Yi Chin [†] , Chieh-Ming Jiang [†] , Pin-Yu Chen, Ching-Chun Huang, Wei-Chen Chiu. Masking Improves Contrastive Self-Supervised Learning for ConvNets, and Saliency Tells You Where, Submitted, 2023
	Yun-Lun Li, <u>Zhi-Yi Chin</u> , Ming-Ching Chang, Chen-Kuo Chiang. Multi-Camera Tracking by Candidate Intersection Ratio Tracklet Matching , Accepted by <i>Proceedings of the IEEE/CVF</i> <i>Conference on Computer Vision and Pattern Recognition (CVPR) Workshop</i> , 2021
Honors and Scholarships	Presidential Honor Award2017 - 2021Achieve top 1% in College of Engineering for 5 timesNational Chung Cheng University
	College Student Research Scholarship - AI calligraphy using 6DoF robotic arm 2020 NT\$ 48,000 Ministry of Science and Technology, Taiwan
	Google Student Travel Scholarship2019Scholarship to attend 2019 Grace Hopper CelebrationGoogle, Taiwan
Projects	 3D Point Cloud Augmentation via SRN - MediaTek Research Project January, 2022 Design a 3D point cloud augmentation based on a novel view synthesis method, scene representation networks, and use PointNet to evaluate our augmented point clouds quality. Replace instance object id with image features from ResNet to apply our method on unseen objects and do interpolation later on. Proposed method is successful in ModelNet10 and generates the augmented data by intra-class interpolation with ShapeNet in the latent space of SRN encoder. Observe limitation of novel view synthesis method on non-textured data.
	 RSNA Pneumonia Detection - Visual Recognition Using Deep Learning January, 2022 Design a two stage method, which first use a classification model to classify pneumonia, then use a detection model to locate the disease. Get the best results when using EfficientNet as classification model with 0.2 classification probability threshold when testing, and YOLOR as detection model. This method can reduce false positive results. Boost the final accuracy 2% by resizing the predicted bounding box to 87.5% of the original size.
	 Generative Models as Data Augmentation - Deep Learning and Practice September, 2021 Investigate image transformation by exploring walks in the latent space of GAN. Use GAN steerability as an data augmentation technique. Conclude that GAN steerability is a better data augmentation technique compare to transformation done in the data space.

Reimplementation Challenge - Reinforcement Learning

July, 2021

- Reimplement ICLR 2018 paper: MAXIMUM A POSTERIORI POLICY OPTIMISATION in Pytorch.
- Successfully replicate the results in Cartpole, Hopper and Acrobot in MuJoCo environment

Google CodeU Calendar Helper - Google

August, 2019

- A multifunctional Webapp for to-do lists and calendars.
- Using Javascript and JQuery as front-end and Java as back-end and host the Webapp on Google cloud console.
- Highlights: tagging system, nice dashboard design, synchronize with Google Calendar.

Programming Languages and Frameworks

- Programming Languages: Python/C++/C/MATLAB/IATEX/Java/Javascript
- Machine Learning: Pytorch/OpenCV/scikit-learn
- Dev Tools: Git/Jupyter/Vim/VS Code/ Google Cloud Platform/ PyCharm/IntelliJ IDEA

Languages

- Mandarin Chinese (native)
- English (proficient)

Skills